martes, 12 de mayo de 2015

NANOTUBOS DE CARBONO


Los nanotubos de carbono son alótropos de este mismo elemento con una nano estructura cilíndrica (la alotropía es la propiedad que poseen algunos elementos químicos de presentarse bajo estructuras químicas diferentes).


Debido a su estructura los nanotubos poseen características extraordinarias que son muy útiles para el desarrollo de potenciales aplicaciones en diversos campos de la nanociencia y la nanotecnología.

  • Nanotubos de Pared Única
Un nanotubo de carbono de pared única se puede considerar como un cilindro que resulta al enrollarse una lámina de grafeno sobre sí misma. Las dimensiones típicas del mismo son un átomo de grosor, unas decenas de átomos de circunferencia y algunas micras de longitud. En comparación con el diámetro del nanotubo el largo del mismo es muchísimo mayor, por lo que simplemente se los suele considerar como si estos fueran elementos de una sola dimensión.
Las propiedades de esta clase de nanotubos de carbono dependen principalmente de dos parámetros que son el diámetro y el ángulo quiral llamado también ángulo de helicidad.

  • Nanotubos de Pared Múltiple
Los nanotubos de carbono de pared múltiple no son más que un conjunto de nanotubos de pared única concéntricos. Estos nanotubos están radialmente separados por aproximadamente 0.34 nm, además poseen un diámetro externo de 10 a 50 nm. Cabe recalcar que estos fueron los primeros tipos de nanotubos que fueron descritos en 1991 por Sumio Iijima, como pequeños tubos con una estructura un forma parecida a la de un aguja.
Se han observado otra clase de nanotubos de pared múltiple, en esta estructura alternativa estos elementos se presentan como una lámina enrollada varias veces sobre sí misma, sin embargo la formación de esta estructura es poco común en el proceso de fabricación de los nanotubos.



jueves, 7 de mayo de 2015

PROPIEDADES



  • Electrónicas
Se ha observado que los nanotubos de carbono tienen características electrónicas excepcionales.En los nanotubos de tipo metálico el transporte de electrones es inmediato, lo que posibilita el transporte de corrientes a través de grandes distancias sin producir calentamiento en la estructura.
Diferentes tipos de nanotubos pueden ser creados mediante la unión de dos tipos de los mencionados anteriormente, formando así uniones metal-semiconductor, semiconductor-semiconductor o metal-metal. Se ha observado experimentalmente que la unión metal-semiconductor se comporta como un rectificador de corriente eléctrica debido a las anormalidades de la unión. Una característica importante de la unión metal-metal es que esta, dependiendo del arreglo de nanotubos que se conecten para formarla, en ciertas circunstancias permite el paso de electrones mientras que en otras bloquea totalmente el paso de los mismos, esto posibilita el uso de estos materiales como nano-interruptores.
  • Mecánicas
Tanto los estudios teóricos como prácticos han demostrado que los nanotubos son los fibras más fuertes conocidas hasta el momento, además se ha observado que estos son capaces de variar su forma acomodándose a la fuerza externa que provoca su deformación, sin que esto represente un cambio irreversible en su estructura molecular. Estudios recientes han demostrado que los nanotubos  no pueden ser comprimidos o estirados en la dirección de su eje, sin embargo también es posible que estos elementos se deformen irreversiblemente ante la presencia de una fuerza que exceda los límites de su resistencia o debido a altas temperaturas.
Además cabe citar su ligero peso frente al de otros materiales de características similares. Las mediciones de las fuerzas que soportan los nanotubos todavía son difíciles de realizar debido a que son estructuras tan pequeñas, que no pueden ajustarse a las tensiones aplicadas en las mediciones estándar, además de la falta de instrumentos de medición para trabajar a escalas tan pequeñas, por lo que esto aún sigue siendo un reto tanto teórico como práctico.

  • Ópticas
Las propiedades ópticas de los nanotubos de carbono son mayoritariamente determinadas mediante la Espectroscopia Raman, en donde la dispersión de una luz monocromática concentrada sobre un punto del material, generalmente la de un láser en el espectro visible, provoca que la energía de los fotones experimente un desplazamiento hacia arriba o hacia abajo, este desplazamiento de energía permite estudiar las características del material, cuando existe una excitación proveniente de una fuente de luz.
Los nanotubos presentan el fenómeno de la luminiscencia, con lo que pueden ser utilizados como fuentes de luz microscópicas.



martes, 5 de mayo de 2015

MÉTODOS DE PRODUCCIÓN

Los métodos de producción actuales solo logran crear una pequeña fracción de nanotubos útiles, esto impide su implementación a gran escala, también debido a la generación de grandes cantidades de impurezas al momento de la creación de los nanotubos.


Actualmente existen tres principales métodos de generación o síntesis de nanotubos, los cuales son:
  • Descargas por arco eléctrico
Los primeros nanotubos descubiertos en 1991, fueron exactamente creados por este método.  Esta técnica consiste en producir una descarga eléctrica entre dos electrodos de grafito, mediante este método se consigue que parte de los electrodos se evaporen formando aproximadamente un 60% de nanopartículas y un 40% de nanotubos de carbono. Este método típicamente produce nanotubos de carbono de pared múltiple, para obtener nanotubos de pared única con este método generalmente se realiza el dopado del grafito con Cobalto o Níquel. La temperatura que se alcanza al momento de la evaporación del grafito está entre los 3000 y 4000 ºC. Esta técnica es excelente para producir nanotubos de pared única o múltiple de una excelente calidad, para la purificación del producto se calientan los nanotubos de manera que las impurezas se oxidan y se desprenden de los mismos.
Captura de pantalla 2015-05-27 a las 14.27.46.png
  • Ablación por láser
El método de ablación por láser utiliza la luz de un láser pulsante, para vaporizar el grafito, el cual es mezclado con una pequeña parte de cobalto y níquel, con el fin de obtener nanotubos de pared única. Para esta técnica el material es introducido en una cámara precalentada a aproximadamente 1200 ºC, después se empiezan a dar los pulsos con el láser y a la vez se hace circular un gas que recoge los nanotubos producidos para depositarlos en otra cámara fría, esta técnica fue demostrada por un grupo de trabajo en 1996. A través de esta técnica las condiciones de síntesis son controladas y mantenidas durante un largo periodo de tiempo permitiendo una vaporización más uniforme de los tubos y en consecuencia una mejor calidad.
Captura de pantalla 2015-05-27 a las 14.25.53.png


  • Deposición de Vapor Químico
La técnica de deposición de vapor químico se basa en la descomposición de hidrocarburos a altas temperaturas para la generación de los nanotubos. En este procedimiento un catalizador es calentado en un pequeño horno, luego la materia prima, un hidrocarburo en estado gaseoso, se hace fluir a través del horno durante un determinado periodo de tiempo, para posteriormente obtener los nanotubos cuando el medio en el que están contenidos se enfría hasta alcanzar una temperatura ambiente, cabe citar que para poder emplear este método se utilizan reactores de deposición química, que son los instrumentos que realizan el proceso ya citado. Este método es el más prometedor de los tres ya que permite la creación de grandes cantidades de nanotubos con pocos defectos y a un costo relativamente bajo.
Captura de pantalla 2015-05-27 a las 14.28.27.png

domingo, 29 de marzo de 2015

APLICACIONES




Electroquímicas

Una importante aplicación de los nanotubos, dada su gran superficie y su baja resistividad, es la electroquímica, como el desarrollo de supercondensadores, dispositivos para el almacenamiento de hidrógeno y fabricación de celdas solares.


Supercondensadores

Los supercondensadores mejorados con nanotubos (tanto de pared simple o múltiple) combinan la larga durabilidad y alta potencia de los supercondensadores comerciales con la mayor densidad de almacenamiento propia de las baterías químicas. Por tanto, pueden ser utilizados en muchas aplicaciones de almacenamiento de energía.

Almacenamiento de hidrógeno

La gran superficie y estructura tubular de los CNTs hace que puedan ser útiles para el almacenamiento de hidrógeno. El hidrógeno se añade a los nanotubos por quimisorcion, puesto que los enlaces de los carbonos que forman el nanotubo ofrecen capacidad hasta su saturación incorporando hidrógenos.


Celdas solares

Gracias a las singulares propiedades eléctricas de los nanotubos se cree que puedan resultar eficaces en la conversión de energía solar en eléctrica.


Memorias

Otros dispositivos que podrían experimentar grandes avances con la introducción de nanotubos de carbono en su construcción es, sin duda, la memoria de acceso aleatorio (RAM). Teniendo en cuenta que las características de una memoria ideal de este tipo serían una gran capacidad de almacenamiento, un acceso a los datos rápido y aleatorio, un escaso consumo energético, un precio bajo por bit almacenado, una fácil integración en la tecnología de circuitos integrados y, a ser posible, la no volatilidad de los datos después de apagar el ordenador, se han intentado diseñar memorias en cuyo funcionamiento juegan un papel esencial los nanotubos de carbono.

Una de las ideas, y puede que la más importante, ha sido llevada a cabo por el grupo de investigadores que dirige Charles M. Lieber de la Universidad Harvard. El diseño de esta memoria se basa en las propiedades elásticas de los nanotubos, que operarían como conmutadores electromecánicos.

Nanotubos en medicina

Según los resultados de una investigación llevada a cabo por un equipo de científicos de la Universidad de California, la fuerza, flexibilidad y poco peso de nanotubos de carbón hace que podrían servir como andamios capaces de soportar a los huesos y ayudar a víctimas de osteoporosis y huesos rotos. Los científicos describen su descubrimiento en un artículo publicado por la revista Chemistry of Materials de la American Chemical Society. Los resultados podrían suponer mayor flexibilidad y fuerza de huesos artificiales y prótesis, además de avances en el tratamiento de la enfermedad osteoporosis. Según el director de la revista, la investigación es importante porque indica un posible camino para la aplicación de nanotubos de carbón en el tratamiento médico de huesos rotos. Actualmente, las estructuras de hueso artificial se fabrican utilizando una gran variedad de materiales, tales como polímeros o fibras de péptido, pero tienen la desventaja de carecer de fuerza y el riesgo de ser rechazados por el cuerpo humano. Sin embargo, los nanotubos de carbón son excepcionalmente fuertes, y existe menos posibilidad de rechazo por su carácter orgánico. El tejido óseo es un compuesto natural de fibras de colágeno y hidroxiapatita cristalina , un mineral basado en fosfato de calcio. Los investigadores han demostrado que los nanotubos de carbón pueden imitar la función de colágeno y actuar como un andamio para inducir el crecimiento de cristales de hidroxiapatita. Al tratar los nanotubos químicamente, es posible atraer iones de calcio lo que fomenta el proceso de cristalización y mejora la biocompatibilidad de los nanotubos al aumentar su hidrosolubilidad.


Otras aplicaciones industriales

Al agregar pequeñas cantidades de nanotubos a polímeros, cambian sus propiedades eléctricas y esto da lugar a las primeras aplicaciones industriales:

- Biomedicina: Investigadores de universidades italianas han hecho crecer células nerviosas en sustratos, cubiertos por redes de nanotubos de carbono, encontrado un aumento de la señal neuronal transferida entre células. Como los CNTs son similares en forma y tamaño a las células nerviosas pueden ayudar a reestructurar y reconectar neuronas dañadas.
- Automóviles: Mangueras antiestáticas de combustible
- Automóviles: Partes plásticas conductoras para pintado spray electrostático
- Aeroespacio: Partes de aviones
- Packaging: Antiestático para electrónicos
- Tintas conductoras
- Materiales extremadamente negros: La sustancia más oscura conocida, hasta la fecha, se ha creado a partir de nanotubos de carbono. El material se fabricó una matriz de nanotubos de carbono de baja densidad, dispuestos de forma vertical. El índice de reflexión del material es tres veces menor de lo que se había logrado hasta ahora. Este "bosque" de nanotubos de carbono es muy bueno a la hora de absorber la luz, pero muy malo para reflejarla. El grupo de investigadores estadounidenses, pertenecientes al Instituto Politécnico Rensselaer de Troy, Nueva York, que lo ha desarrollado aseguran que es lo más parecido que existe al cuerpo negro. Un cuerpo ideal que absorbe la luz de todas las longitudes de onda y desde todos los ángulos posibles. Se espera que el desarrollo de estos materiales tengan aplicaciones en los ámbitos de la electrónica, la invisibilidad en la zona del visible, y en el campo de la energía solar.
- Deportes: Debido a la alta resistencia mecánica de los nanotubos, se están empezando a utilizar para hacer más fuertes las raquetas de tenis, manillares de bicicletas, palos de golf, y flechas de última generación.


sábado, 17 de enero de 2015

PROBLEMAS

En años recientes, un número creciente de informes científicos y gubernamentales han alertado que las partículas construidas artificialmente a nano escala, podrían presentar nuevos riesgos a la salud y al medio ambiente. En un informe de la Royal Society y la Real Academia de Ingeniería del Reino Unido de 2004, se concluye que las nanopartículas y los nanotubos se deben considerar químicos nuevos, y como tales ser objeto de evaluación y precaución.



Cientos de productos que contienen nanotubos o nanopartículas de diferentes elementos circulan en el mercado sin etiquetado ni advertencia, ya que prácticamente no existen regulaciones sobre este tipo de partículas. Es preocupante porque pueden estar en contacto con nuestra piel, por medio de cosméticos y bloqueadores solares; también en los campos agrícolas, como plaguicidas nanoencapsulados; en nuestros refrigeradores, como aditivos alimentarios, y en nuestro cuerpo, como vehículos para la administración de medicamentos. Además, están presentes en materiales que componen muchos objetos de uso cotidiano, como prendas de vestir (camisas y pantalones "que no se manchan"), artículos de cocina de teflón, filtros de lavarropas, coberturas de hornos, neumáticos de automóviles, pantallas de televisión, teléfonos celulares y muchos más.


El supuesto es que como los materiales que se usan, en general ya están bajo regulación, la nueva formulación en nanopartículas se comportaría de la misma forma. Hay crecientes evidencias de que no es así. Aunque en la naturaleza existen nanopartículas, por ejemplo, en cenizas volcánicas o en nanocristales de sal en el aire del océano, nunca habíamos estado expuestos a las nanopartículas artificiales que se están produciendo ahora. 
Uno de los problemas es el tamaño de las nanopartículas. Con la miniaturización aumenta la superficie de contacto, y por tanto el potencial reactivo o catalítico de los elementos. Mientras más pequeña es una partícula mayor es su reactividad, por lo que una sustancia que es inerte en la escala micro o macro puede mostrar características dañinas en la escala nano. Por su tamaño, penetran a través de la piel y el torrente sanguíneo, y el sistema inmunológico no las reconoce. Al entrar en contacto con tejidos vivos, las nanopartículas pueden ser origen de la aparición de radicales libres, causando inflamación o daño a los tejidos y posterior crecimiento de tumores.